English Title : Computer Architecture: Fundamentals and Principles of Computer Design 1st Edition
عنوان فارسی : معماری کامپیوتر: اصول و اصول طراحی کامپیوتر
Description
Future computing professionals must become familiar with historical computer architectures because many of the same or similar techniques are still being used and may persist well into the future. Computer Architecture: Fundamentals and Principles of Computer Design discusses the fundamental principles of computer design and performance enhancement that have proven effective and demonstrates how current trends in architecture and implementation rely on these principles while expanding upon them or applying them in new ways.
Rather than focusing on a particular type of machine, this textbook explains concepts and techniques via examples drawn from various architectures and implementations. When necessary, the author creates simplified examples that clearly explain architectural and implementation features used across many computing platforms.
Following an introduction that discusses the difference between architecture and implementation and how they relate, the next four chapters cover the architecture of traditional, single-processor systems that are still, after 60 years, the most widely used computing machines. The final two chapters explore approaches to adopt when single-processor systems do not reach desired levels of performance or are not suited for intended applications. Topics include parallel systems, major classifications of architectures, and characteristics of unconventional systems of the past, present, and future.
This textbook provides students with a thorough grounding in what constitutes high performance and how to measure it, as well as a full familiarity in the fundamentals needed to make systems perform better. This knowledge enables them to understand and evaluate the many new systems they will encounter throughout their professional careers.
Table of contents
Chapter 1. Introduction to computer architecture
Chapter 2. Computer memory systems
Chapter 3. Basics of the central processing unit
Chapter 4. Enhancing CPU performance
Chapter 5. Exceptions, interrupts, and input/output systems
Chapter 6. Parallel and high-performance systems
Chapter 7. Special-purpose and future architectures
Appendix. Reference and further reading materials with web links
Joe Dumas earned his Ph.D. in Computer Engineering from the University of Central Florida in 1993, where he also received the first Link Foundation Fellowship in Advanced Simulation and Training. Previously, he earned the M.S. degree in Electrical Engineering from Mississippi State University in 1989 and the B.S. degree in Electronics Engineering Technology, with a minor in Computer Science, from the University of Southern Mississippi in 1984.
Dr. Dumas is a faculty member in the University of Tennessee at Chattanooga’s College of Engineering and Computer Science, where he holds the rank of UC Foundation Professor and has served as a Faculty Senator and Chair of the Graduate Council, among a number of campus leadership positions. He was chosen as Outstanding Computer Science Teacher in 1998, 2002, and 2009. Dr. Dumas’ areas of interest include computer architecture, embedded systems, virtual reality, and real-time, human-in-the-loop simulation.
Dr. Dumas is a member of several academic honor societies including Upsilon Pi Epsilon (Computer Science), Eta Kappa Nu (Electrical Engineering), Tau Beta Pi (Engineering), and Tau Alpha Pi (Engineering Technology). He was a founding member of the Chattanooga chapter of the IEEE Computer Society and served for several years as faculty advisor for the UTC student chapter of IEEE-CS. An avid downhill skier, tennis player, and distance runner with over 30 completed marathons, Joe Dumas lives in Signal Mountain, Tennessee with his wife Chereé.